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We investigate lower order distribution functions in classical fluids in the presence 
of large-scale inhomogeneities, in particular those imposed by wall contacts. The 
consequences of the effective shielding of a wall by the nearest particle of the set 
being considered are determined in the context of two distribution function 
hierarchies, kinematic and dynamic in origin. The effects of both flat and 
spherical, hard and soft walls are considered, as well as those of curved and 
double walls. A few correction sequences to the basic shielding approximation 
are discussed. 
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1. I N T R O D U C T I O N  

The study of inhomogeneous fluids has expanded greatly in recent years. On 
the one hand, classical thermodynamic arguments applied to weak inhomo- 
geneities have been rigorously verified (see, e.g., Ref. 1). On the other hand, 
strong inhomogeneities, ranging from two-phase interfaces (2-6) to hard-wall 
boundaries,(7-11) have been the subject of extensive numerical and analytical 
investigation (see Refs. 12 and 13 for recent reviews). It is the topic of 
externally imposed boundaries that we intend to pursue in this paper. 

In sequence, we first introduce the concept of shielding of distributions 
and the accompanying approximation hierarchy. We then recall the two 
major distribution function hierarchies, based respectively on direct correla- 
tion functions and upon Ursell correlations. We indicate the peculiar advan- 
tages of the latter for the present approximation scheme, and apply it to a 
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hard-sphere fluid bounded by a hard wall. Generalization to softened inter- 
action potentials then follows, as well as to softened and nonflat walls. 
Extension is also made to containment by more than one wall. A few 
illustrative examples are presented. Finally, a systematic correction sequence 
is set up and discussed in a preliminary way. 

2. SH IELDING OF D I S T R I B U T I O N S  

It is a truism in classical equilibrium statistical mechanics that a little 
dynamics goes a long way. What this means is that whereas a system can be 
described either realistically by a time average, or much more conveniently in 
computation by a phase space average, an intermediate strategy is often 
superior: one selects a few mode variables to follow in time and supplies the 
remaining variables via a phase space average. Although this division is not 
often used explicitly, its implicit use is widespread. An example that is 
particularly relevant to the present discussion occurs in the analysis of low- 
pressure two-phase liquid-gas interfaces. It has been found (*) that two- 
particle correlations normal to the interface are very well represented by 
imagining that the density profile is the average of the motions of a sharp 
interface which retains its integrity long enough for bulk equilibrium to be 
established in its reference frame. Thus if z is the direction normal to the 
interface, and ~ the normal or longitudinal location of  the interface, the short 
time system density for liquid on the right and nominally zero-density gas on 
the left is represented by 

n~(z) = noc(Z - 3) (2.1) 

Here e is the unit step function and n o the bulk liquid density. 
Now if, at a given transverse location x = (x, y), ~ is distributed 

according to the probability f(~), we have the equilibrium average 

f n(z) = no E(z - ~ ) f ( r  d~ = no f(?,)  d~ (2.2) 
--00 

It further follows from the corresponding Ansatz for the pair distribution 

n2r r') = no29(r - r')E(z - r - ~) (2.3) 

with g the bulk fluid radial distribution, that 

n2(r, r') =/702 .ijo(r - r ')s - ~)E(S -- ~)f(~) d~ 

/~min(2,zt) 

= noZg(r - r') | f ( ~ )  d~ = non(Zr~i,)g(r - r') (2.4) 
j -  
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It is (2.4) that has been verified to surprising accuracy when r and r' have the 
same transverse location so that the transverse structure of the interface is 
irrelevant. In precisely the same fashion, we can derive the approximation 

ns(r 1 ,..., rs) = nSo - an(zmin)gs(rl ..... rs) (2.5) 

with gs the dimensionless s-body bulk distribution function. 
The expression (2.2) clearly requires that n(z)  increase monotonically 

with z. If  this is not the case, as in the oscillating profile of  a wall-bounded 
fluid, the above physical justification for (2.4) is lost. It can be recovered (14) 
by adopting a more complicated "intrinsic profile" than that given by (2.1), 
but this becomes considerably more ad hoc. The relation (2.4), however, has 
a far greater range of validity. To see this, one need only look at the case of  
a wall-bounded, one-dimensional, hard-core fluid. The distribution functions 
of the bulk fluid are known to be given ~15) by the ordered superposition 
principle 

ns(Zl ,  z2 , . . . ,  Zs) = noSg(zl  - z z ) g ( z 2  - z3)"'g(Zs 1 - zs) (2.6) 

for z~ <<, z 2 "" ~< zs, where g is again the bulk radial distribution. If the cores 
are of diameter a, insertion of a single wall w restricting the particle centers 
to z >/0 is equivalent to placing a particle at z = - a :  

ns(zl  ..... z~[w) = n~+ l ( - a ,  z 1 ..... Zs)/no (2.7) 

In particular, from (2.9), 

n(z lw)  = rtog(z q- a) (2.8) 

and it follows that (2.7) may be rewritten as 

ns(Zl ..... z~lw) = n(Zmi, lW)ns(Zl ..... z Y n o  (2.9) 

Thus the relation (2.5) holds exactly. 
The justification for (2.4) is intuitively obvious in the one-dimensional 

hard-core system: if - a  < zl < z2 ,  the fixing of particle 1 renders the 
distribution to the right of 1 independent of the conditions on its left. Thus 

n(z2 [zl ,  w) = n(z2 [zx) (2.10) 

o r  

Hence 

n(z2 ,  Za[W)/n(z l lw)  = n z ( z z ,  Z l ) /no  (2.11) 

n2(z2 ,  z l  [w) = n(z  1 [w)nz(z  2 - z S / n  o (2.12) 

identical with (2.4). Summing up, (2.4) is a consequence of  the fact that 
zmi . shields the particles to the right from the influence of the wall to the left, 
and this generalizes at once to (2.9). 
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To what  extent is the shielding argument  extendable to three-dimensional 
space? This depends upon  the extent to which the particles in question are 
shielded f rom external control  by their neighbors.  Suppose, for example, that  
we have a single wall described by z ~< 0, and that  r~ is the furthest f rom the 
wall o f  s identified particles with  hard  cores  (Fig. 1), 

z~ >1 z i, i = 1,..., s - 1 (2.13) 

all o f  which are constrained transversely: 

Ix i - x j l < b ,  i , j =  1 .... , s  (2.14) 

where x - (x, y). It is clear then that for large s, n(r~) will be independent of  
the presence o f  the wall: 

n(r~[r 1 ..... r~_ 1, w) = n(rs[r 1 ..... rs_ 1) (2.15) 

(and, for that  matter,  o f  the particles close to the wall). Equat ion (2.15) can 
be written as 

ns(rl . . . . .  L I w ) / n , - l ( r l  ..... r~_ llw) = n~(rl ,..., r~)/n~_ l(rl . . . . .  L - 1 )  

and hence in general as 

n~(rl ..... rslw) = n~(rl .... , rs) n~-l(r l  ..... r . . . . . . . .  Lfw)  (2.16) 
n~_l(rl .... , f  . . . . . . . .  r~) 

where ~'max indicates the absence of  the particle o f  maximum z. On the other 
hand, the strongest statement emanat ing f rom the shielding idea would be that 
r 1 shields r 2 ..... r s f rom the wall, yielding now 

n~_ l(r2 ..... Llwr 0 = rt s_ l(r2 ..... r, lrl) 

Thus 

so that 

n~(rl ..... r~[w)/n(rl]w) = n~(rl ..... rs)/n(rl) 

n(rm~nlw) 
ns ( r l  . . . . .  rslw) - -  n s ( r l  . . . . .  r~) (2 .17 )  

nO 

w 

Fig. 1. Shielding configuration. 
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We m a y  refer to (2.16) and (2.17) as the extreme cases t = s - 1 and t = 1, 
respectively, o f  the t -body shielding app rox ima t ion  for  the s -body 
distribution. 

As we have observed,  the wall w in (2.15) need not  be a physical  wall. 
It can refer to ano ther  particle at z = 0. Then  

ns(rz ..... rs+l l r l )  = ns+ 1(rl .... , rs+ 0/n(rx)  

and (2.16) becomes 

ns+ 1(rl ..... rs+ 2) = n~(ra ..... rmi ...... r~+ 2) 

ns ( r l  , . . . ,  r . . . . . . . .  r~+ 1) 
x (2.18) 

ns-1(r l  ..... fmi,~, ~ . . . .  ..., rs+ 2) 

a shielded distr ibution superposi t ion principle. F o r  example,  taking s = 2, 
with particle posi t ions r<,  rM, and r>,  we have f rom either (2.16) or (2.t 7) 

n3(r<, rM, r>) = n2(r M, r>)n2(r<, r~)/n(rM) (2.19) 

obviously mimicking  the si tuat ion for one-dimensional  cores. In  reality, 
(2.18) will be valid only for  large s, but  for  any order ing direction with 
respect to which the transverse extension o f  the set o f  identified particles is 
restricted. 

3. K I N E M A T I C  H I E R A R C H I E S  

Reduct ion  formulas  for  distr ibution functions,  such as (2.16) or (2.17), 
are o f  course useful not  only conceptually,  but  for  computa t iona l  purposes  
as well. To  this end, they m a y  be coupled to any of  a n u m b e r  of  sequential  
interrelat ions between distr ibution functions,  which they then serve to 
truncate.  Since o u r  objective is to analyze the changes in bulk proper t ies  
evoked  by the appearance  o f  a drast ic inhomogenei ty ,  it is appeal ing to seek 
a fo rmula t ion  in which only bulk proper t ies  enter as input,  i.e., in which 
s imul taneous use of  the (in principle redundant )  interact ion potent ia l  is not  
required. One such in teract ion- independent  relat ion has been used several 
times. (4"6) I t  relates specifically to the effect o f  apply ing  an external potent ia l  
to a system whose internal interact ions are all t ransla t ion invariant .  Suppose 
that  T~ is the finite t ranslat ion opera to r  

Tari = ri + a, any i (3.1) 

N o w  if p(r) is the microscopic  density 

p(r) = ~ 6(r - r/) (3.2) 

H o the internal Hami l ton ian ,  # the chemical  potential ,  f~ the grand potential ,  
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and 

U = Z u(ri) (3.3) 

the external potential, we have in a grand ensemble 

n(rl{u(y)}) = Tr p(r) exp[- /3(Ho + U - N/~ - Q)] (3.4) 

Hence 

n(r + al{u(y)}) = Tr p(r + a) exp [ - /3 (H  o + U - N/~ - f~)] 

= Tr T 2 1 p ( r ) T = e x p [ - ~ ( H o  + U - N l t  - f~)] 

= Tr p(r )exp[-]3(Ho + T a U T ~  1 - N ~  - f~)] 

= n ( r ) l { u ( y  + a)}) (3.5) 

the obvious statement that translating u by a has the result of translating n 
by a. The effect of an infinitesimal translation follows immediately by 
applying Val,= o : 

f 6n(r) Vn(r) = V u ( y ) ~ d y  (3.6) 

which with its inverse 

f 6u(r) Vu(r) = Vn(y) ~ dy (3.7) 

are our basic relations. 
For a classical system, the change of the one-particle density with an 

infinitesimal change of external potential is simple and well known: 

6n(1) = - ~/~2(1, 2) 6/~u(2)d2 (3.8) 
3 

where 

F2(1, 2) = n2(1, 2) - n(1)n(2) + n(l) 6(1, 2) 

x a being replaced by the short-hand notation 1, etc. The inverse of (3.8) is 
normally written as 

6/~u(1) = - ~ C2(1, 2) 6n(2) d2 (3.9) 
g 

where 

6(1, 2) 
C2(1, 2) ~ e2(1,  2) 

n(1) 



Distribution Approximation for a Wall -Bounded Classical Fluid 663 

cz being the direct correlation function of Ornstein and Zernike. Hence (3.6) 
and (3.7) transcribe to 

n(l)fl Vu(1) + fin2(1 , 2) - n(1)n(2)]fl Vu(2) d2 = 0 (3.10a) Vn(1) + 

Vn(1) f n(l~- + fl Vu(1) = c2(1, 2) Vn(2) d2 (3.10b) 

either of which is complete providing n2(1 , 2) or c2(1 , 2), respectively, can be 
supplied from without. These are, however, just first members of hierarchies 
which are appropriate to the insertion of information about higher correla- 
tions. For example, one sequence that extends (3.10a) can be generated by 
taking the coefficient of a, ,-"a~ in (3.5) (where a, denotes the e component 
of a), or equivalently by repeated differentiation of (3.6) in the recursive form 

V,~-'-V .... n (1 )=  [ - f l V  .... u(s+ l ) ] 8 _ / 3 u ( s +  1) V~'"V~fl(1)ds+ 1 

(3.11) 

This yields in short order 
(, 

Van(l) = ! [ - / 3  V~u(Z)]P2(12 ) d2 

V~IV~2n(1 ) = f [ - / ~  V~lu(2)][-/3 V=2u(3)]F3(123 ) d2 d3 

+ f [ - 3  V~V~2u(2)]ff2(12) d2 

V~V,2...V~ n(1 ) = (_/3)t- 1 
J J t = 2  

(3.12) 

Z A ~ = ( 1  ..... s) i = 2  

where the disjoint subsets A i are ordered, A i < A~+ 1, using any convenient 
subset ordering; here 

fit(1 ..... t) = ~ t ~ t _  l ( 1  . . . . .  i - -  1 ) / ~  - -  f ib / ( / ' )  

is the tth-order modified Ursell function. 
Equation (3.10b) can of course be extended in precisely the same way. 

Applying the above procedure to In n(1) + flu(l), we generate the sequence 
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V[ln n(1) + flu(l)] = je2(12) Vn(2) d2 

V,~V~2[In n(1) + u(1)] = ;c3(123) V~n(2) V~2n(3) d2 d3 (3.t3) 

+ fc2(12) V~lV,2n(2) d2 

where c3(123 ) = 6c2(12)/6n(3) is the third direct correlation, etc. Other hier- 
archies [in fact implying (3.12), (3.13)] can be obtained by functional differen- 
tiation of (3.10). Equivalently, for (3.10a), we can employ an infinitesimal 
translation in the now obvious 

ns(rl + a ... . .  r s + a l { u ( y ) } )  = ns(r ~,. . . ,  r , [ {u(y  + a ) } )  (3 .14 )  

resulting in 

fans(l,..., s) 
(V1 + ' " +  Vs)ns(1 ..... s ) = j  ~ + i )  Vu(s+  l ) d s +  l (3.!5) 

or via standard functional derivative operations, 

(Vl + "'" + Vs)n~(1 ..... s) + ns(l ..... s)fl ~ u(j) 

f[n~+l(1 ..... s +  1)-n~(1 .... , s )n(s+ 1) ]Vu(s+  1 ) d s +  1 = 0  (3.16) + 

Similarly, from 

cs(r 1 + a ..... r~ + a]{n(y)}) = c~(r~ ..... r~]{n(y + a)}) (3.17) 

we can generate the sequence 

(V 1 + ' " +  V~)cs(1 ..... s ) =  los+l(1 ..... s +  1) Vn(s+ 1 ) d s +  1 (3,18) 

which includes (3.lOb) when one makes the identification c l ( r )=  In n(r)+ 
flu(r). 

Finally, it should be noted that the development of this section goes 
through unchanged for any infinitesimal transformation under which the 
internal Hamiltonian is invariant. For example, for rotational invariance, we 
need the operator 

L = r x  V (3.19) 
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and thereby obtain 

Ln(1) f n(1-- ) + flLu(1) = c2(1, 2)Ln(2) d2 (3.20) 

which is not derivable from (3.10b), and in fact may be combined with (3.10b) 
to yield 

r e2(1, 2)(r 1 - r2 ~) • Vn(2) d2 = 0 (3.21) 

The operators V and L can be combined in forming higher order derivative 
relations analogous to (3.12), (3.13). 

Now, how are the various hierarchies to be used? In practice, they must 
be terminated with some approximation. Let us consider the first member 
(3.10a) to illustrate the type of problem encountered. For definiteness, sup- 
pose that u represents a hard wall z ~ 0 (meaning that particle centers cannot 
penetrate this region). Then 

n(r)fl Vu(r) = - {n(r) exp[flu(r)]} V exp[ - f lu ( r ) ]  

= - {n(r) exp[flu(r)}2 6(z) = - n j  6(z) 

where n w is the wall density, and we have used the continuity of ne ~" in a 
singular potential. Since the density will be only z dependent, we have from 
(3.10a) 

On(I) f ~zl - n~, g~(zl) + n w [n(ll2) - n(1)]z2=o d2x2 (3.22a) 

nw 6(zl) + nwn(1) f i g ( l ,  2) - l]z2=o d2x2 (3.22b) 

the integrand having been reduced by writing n(1 ,2)=n( l f2)n(2)  and 
simplifying n(2)fl Vu(2) as above. Here and henceforth, the transverse co- 
ordinates will be designated by x = (x, y). "Termina t ion"  now consists of 
expressing n(l12 ) or g(l,  2) in terms of known, e.g., bulk quantities. 

Any approximations used in (3.22) have at the very least to satisfy a 
simple restriction: the density must go from the wall density n w at the wall 
to the bulk density n o as z ~ oc. If  (3.22) are taken over the full space, they 
will be consistent with n(z) = 0 for z < 0, rising to nw at z = 0 +. But the 
asymptotic bulk density no is not guaranteed. Divide (3.22b) by u(1) and 
integrate from z 1 = 0 + to o% obtaining 

I n n o - l n n w = n , , f i [ 9 ( 1 , 2 ) - l ] z 2 = o d 2 x 2 d z  1 (3.23) 

0 
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I fg(1 ,  2) is replaced by its bulk value 9o(1, 2) and the compressibi l i ty relation 

no f [9 ( r12 )  - 1] d3r12 = Ono/~tiP (3.24) 1 + 

utilized, (3.23) yields the approx imat ion  

In(no/tiP) ~- �89 - 1) (3.25) 

which is simply not  true. I f  instead the kernel of  (3.22a) in the region zl > 0 
is replaced by its bulk  value no[9o(r~z ) - 1] and we integrate f rom 0 + to ~ ,  
there results 

1 = 2 \3 t iP  - 1 (3.26) 

which is different but  still not  correct  [it implies no = t ip - c(BP)~/2]. 
The si tuation is not  improved  if the kernel o f  (3.22a) is replaced by the 

shielding approx ima t ion  

n(l12 ) - n(1) = nogo(r~2) - n(1) (3.27) 

which is guaranteed to work  in one dimension (for nearest  neighbor  forces). 
In the three-dimensional  version, what  is p roduced  is not  just  a poor  approxi-  
mat ion,  but  in fact a divergent integral. The reason for this is instructive. As 
we have pointed out,  the shielding approx ima t ion  is not  valid for  large trans- 
verse separat ion o f  r 1 and r2, where indeed n(l[2) - n(1) is seen to approach  
no - n(1) instead of  the correct  value of  zero. 

I t  is a bit unfair  to assume that  n(z) vanishes for  z < 0 and then look 
only at the interval 0 + to ~ : the hard wall is but  a convenient  test potential ,  
and the vanishing of  n(z) within it should be an au tomat ic  consequence of  the 
theory. To  examine this point,  let me re turn to (3.10b), which, in the context  
o f  approx imate  t runcat ions,  need not  be equivalent  to (3.10a). Again,  we set 
n(r) Vtiu(r) = - n ~ s  6(z), for which purpose  (3.10b) is first multiplied by n(1): 

n'(zl) -~ nw 6(zl) + n(z~)c2(l, 2)n'(z2) d2 (3.28) 

N o w  if the kernel replacement  cz(1, 2) --* C2o(r12) is made,  n(z) will vanish 
for z < 0, but  the system cannot  be solved in closed form and n - no will 
again be incorrect.  If, instead, n(zl)ca(1, 2) -~ noc2o(r12 ), n(z) will only vanish 
up to minus the range of  c 2, and of  course n w - no will be incorrect.  The  
fo rmer  deficiency can be corrected by replacing n w 6(z1) by a funct ion vanish- 
ing for z 1 < 0 [so that  Vu in (3.10b) remains  infinite for  zl < 0, zero for zl > 01 
so constructed that  n(z )=  0 for zl < 0. This gives an excellent hard-core  
density profile ~9) except near  the wall, but  o f  course the balance between wall 
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density and asymptotic density is not maintained. Various ad hoc strategies 
can be used to correct the wall contact region, but their basic empirical nature 
leaves something to be desired. 

4. D Y N A M I C  H I E R A R C H Y  

One of the reasons for the difficulty with (3.10) is, as we have noted, that 
it requires complete transverse information on n2(1, 2 ) -  x 2 covers all of  
space. This requires good matching between short- and long-range correla- 
tions, and implies that any unsuspected long-range order, e.g., near a phase 
transition, will be missed in any obvious approximation. It also means that 
the limited transverse extension needed for the shielding approximation does 
not obtain (but see Section 9). This objection becomes less compelling when 
the correlation range is far exceeded by the interaction range, as in Coulomb 
forces, but that is another story. 

Let us suppose then that we are considering a system with short-range 
interaction. To take advantage of this, we require a formulation in which the 
interaction appears as an explicit weight. The required input of consistent 
interaction potential and bulk distribution data is not that onerous, as we shall 
see. This suggests that we examine the use of the grandaddy of distribution 
hierarchies, the BBGKY system (see, e.g., Ref. 16). This can in fact be derived 
as we did (3.6), with two modifications, as follows. 

First, we must now consider spatial transformations under which the 
internal Hamiltonian H o is not invariant, and second, with this added general- 
ity, it suffices to examine the change in the "0-particle" quantity E = e -B~, 
the grand partition function, i.e., 

E = Tr e x p [ - f l ( H  o + U - Nu)] (4.1) 

We will also assume hereafter that the internal potential is due only to pairwise 
interactions: 

1 
Ho = K + r K = Z Pl2/2m, ~ = ~ ~ ~b(r,, rj) (4.2) 

Restricting our attention now to the classical case, we carry out a pure 
spatial distortion T which is not volume-preserving. Since 

d 3 ( T r T  - 1) = Det VT(r) d3r = exp[Tr In VT(r)] d3r (4.3) 

we now have 

= t rexp  - f l  THo T-1  + T U T - 1  - ~ T r  ~ ln [VT(r l ) ]  - N/~ (4.4) 
i 
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The corresponding infinitesimal aT has the general form 

aTf(ri) = r Vf(rO 

so that 

(4.5a) 

so that 

if f n(1 )V .~ ( l )d l=  Vu(l).r 

+ffr 2) dld2 (4.10) 

[6T, u(i)] = r Vu(i) 

[aT, q~(i,j)] = [~(i)-Vi + ~(j).Vj]dp(i,j) (4.5b) 

Tr ln[V(ri + aT(rl) ] = V. ~(i) 

Hence the infinitesimal version of (4.4) reads 

0 =  f v.r + f r 

+ f f [ e ( 1 ) . V  1 + e(2)'V2]~b(1, 2) 6E/aO(1, 2) dl d2 (4.6) 

On taking the coefficient of r [applying 6/ar we find that (4.6) 
reduces at once to 

Vn(1) + n(1)fl Vu(1) + fn2( l  , 2)fi Vlq~(1, 2) d2 = 0 (4.7) 

the first of the BBGKY hierarchy. But this formal derivation conceals the 
physical significance of (4.7). Let us start instead with the basic Newton 
equations for the balance of momentum flow 

rn~ i = - Vu(ri) = ~ ViqS(rl, r j) (4.8) 
j r  

and using a test function {(r), convert these to 

m ~ ~(ri)-i: i = - ~  {(ri)-Vu(rl) - ~ {(r,).V~b(r,, rs) (4.9) 
j# i  

Now on averaging in classical equilibrium 

({(ri).i~i) = d r (f~.Vr mfl (V.r 
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the "hypervir ial"  generalization of  the virial theorem, which involves the 
choice 4(1) = r l .  On applying 6/64(1). we recover (4.7), which can thus be 
identified with the local conservation of momentum flow. [Somewhat more 
briefly, (4.7) is an immediate consequence of  the general sum rule 
( V . F  + F.Vfl(O + U)) = 0 with the dynamical origin ( [H,  p . F ] )  = 0.] 

An important virtue of  (4.7) is that consistency between wall density and 
asymptotic density for a wall-bounded fluid is guaranteed. In the presence of a 
hard wall, (4.7) transcribes as before to 

Vn(1) + fn2(1, 2) Vlflq~(1, 2) d2 -- nw 6(zl)~ (4.11) 

resulting of  course in a rise of n(1) from zero to nw as the wall is passed. But 
in addition, the implicit momentum flow conservation produces asymptotic 
consistency: multiply by the unit step function e(z - Zl) and integrate over 
all z 1 , obtaining 

n,~ - n(z) = ~ n2(1, 2)[e(z - zl) - ~(z - z2)] 

• Bq (1, 2) dz1 dz2 d2x  (4.12) 

This is precisely the virial theorem for pressure if n2(1, 2) reduces to its bulk 
value for large Zx, z2, which is thereby the only condition needed. 

The sharp distinction between the dynamic BBGKY equation (4.7) and 
the kinematic linear response equation (3.10a) is of course illusory. They 
both stem from examination of  the change of distribution functions under 
spatial transformations. But the linear response format uses only special 
Hamiltonian-preserving transformations and so must employ a higher 
distribution to convey the same amount of information. To see this explicitly, 
let us restrict ~ in (4.6) to the constant unit dyadic I. We then have 

0 - -  -/~ fn(l) Vu(1)dl - �89 ,f (VI + Vz)dp(1,2)n2(1,2)dl d2 (4.13) 

The second term vanishes if 4(1, 2) is translation invariant, leading to 

fn(1)  dl = 0 Vu(1) (4.14) 

Physically, (4.14) asserts that the total external force on the system vanishes. 
But it may also be recognized as the generator of  the linear response sequence 
(3.15) [multiply by 5 and differentiate successively with respect to 
6/be- ~,(2) ... 6/6E- p,(s + 1)] or of  (3.18) [differentiate successively with respect to 
6/6n(2)...6/6n(s + 1)]. 
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The possible inadequacies of (4.14) or its consequences are apparent from 
the fact that it is also equivalent to integrating (4.7) over r 1 . One therefore 
no longer has pointwise momentum conservation, but rather a much weaker 
global statement. The same comment applies to higher members of the 
hierarchy. To obtain these, first replace ~ in (4.6) by ~e p~, yielding 

O=f[V.~(1)]n(1)eP~(~)=-dl-llff[~(1).V~O(1,s+l)] 

x e -~"('+ 1)nz(1 , s + 1)e pE"m+~s+ 1)1E dl ds + 1 (4.15) 

Then differentiate successively 6/6e -u(2)'''6/6e -"~s), so that 

0--- V.~(1)]ns(1 ..... s exp fi u(2 Edl 

-/ / .f .I~(1).V14~(I,  s + 1)exp[-fiu(s + 1)] 

[ 1 x n~+~(1 ..... s + l )  expfl u(i) E d l d s + l  

- fl ~ (~(1).Vl~b(1, i)n~(1 ..... s)exp[fil~u(i)]E dl (4.16) 
j = 2 ,  ; 

and replace ~ by ~e-~": 

f V .  ~(l)ns(1,..., s) dl 

= ~ f,x,, , s)[e(1).v,(,) + ~ e(1).v~e(1, i)] Ul 

+ ]3 JJn,+l(1, . . . ,  s + 1)~(l).Vlq~(1, s + 1) dl ds + 1 (4.17) 

Taking the coefficient of  ~(1) now results in our first option, 

Vine(1 .... , s) + ,ns(1 ..... s)~Vu(1) + ~ V~O(1, i) 1 
L 

+~fns+l(1 ..... s+ l )  V~qS(1,s+l)ds+1=O (4.18) 

the full BBGKY hierarchy. 
Cyclical permutation of 1 .... , s and summation of (4.18) also produces 
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the version analogous to (3.15), 

v;ns(1 ..... s) + s) Z vu ( i )  + B s(1 .... , 
1 

x ~Vi f f ) ( i , j )+f i~ns+l (1  ..... s + l )  Z V i ( i , s + l ) d s + l = O  (4.19) 
i ~ j  g i 

in which ~ j  V~b(i,j) = 0 for translation-invariant q~. But then there is the 
second option : choose ~ -- I in (4.17), equivalent to integrating (4.18) over r l .  
If ~b is translation invariant, then 

fns( l  ..... s) Vu(1)dl=fns(1 ..... s )~ 'Vicp( l ' i )d l=02 (4.20) 

or reinserting (4,19) for s--* s - 1, 

Vine_l(2 ..... s)+fln~_~(2 ..... s) Vu(i)fl ns(1 .... ,s) V u ( 1 ) d l = O  (4.21) 
2 

precisely the sequence (3.16). 
We conclude that the linear response type hierarchy corresponds to an 

averaged version of the BBGKY sequence, with the attendant advantage of 
not needing the internal potential but the disadvantage of not satisfying 
important conservation conditions automatically. More to the point from our 
present view, however, we have, instead of the relatively short-range Ursell 
correlations, the variable rs+ ~ in (4.19) controlled by V~b(1, s + 1), so that 
indeed the transverse extension of the distributions can be bounded. Thus, a 
shielded distribution approximation becomes feasible for truly short-range 
forces and will be used. 

5. H A R D - S P H E R E  FLUID  B O U N D E D  BY A H A R D  W A L L  

Let us examine the first of the BBGKY hierarchy in further detail for a 
fluid bounded by a planar hard wall. Since wall density and asymptotic 
density are automatically correct, we will be interested in how well the inter- 
vening density profile can be obtained. For this purpose, we make the afore- 
mentioned approximation that the particle closest to the wall in n2(1, 2) 
effectively shields its partner from the action of the wall. The wall influence 
of course "leaks through"  increasingly as the particles separate, especially 
transversely, but at least their separation is bounded by the range of  the 
interaction. Thus 

n2(1, 2) ~ [n(1)e(z2 -- zl) + n(2)e(zl - zx)]nogo(1-2 ) (5.1) 
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and (4.11) reduces to 

~n(z O f Oz--~- -t- no jn(zOE(z2 - zO 

+ n(z2)~(zl  - z2) z1-~2 90(r12)~b'(r12) dzz dx22 = 13P 6 ( z l )  
/'12 

(5.2) 

Since 

f f(r12) dx22 = f fc(z~2 + p2)l/232~p dp 

= ~ f ( R )  d (R  2) = 2re R f ( R )  dR 
12 Z I2  

and the coefficient of n(zl)r 1 - z2) in the integrand is odd in z12, we have 

~n(zl) f f o~ ~?z---~ + 2~no u(z2)e(Zx - z2)z12 go(R)~(o'(R) dR dz 2 
12 

f fz - 2rmon(zO E(Zl - Zz)Z12 9o(R)~c~'(R) dR dz 2 = ,SP 6(zl) (5.3) 
12 

Equation (5.3) is a linear equation in n(zl) which can be solved by 
applying the Fourier transform S ( ' )  eikz' d z j  

o r  

where 

--ik~(k) + 2nnog(k ) eikZz 9o(R)~(f(R) dR dz 

- 2~no~(k) z 9o(R)~4'(R) dR dz = BP (5.4) 

~P 
~(k) = (5.5) 

- ik + no[A(k) - A ( 0 ) ]  

fo ~ ~ (~- ~,~) f~(k) - 2zc 9o(Z)~(a'(z) - ~  \ ~ ]  dz 

ti(k) of course denotes the Fourier transform of n(z). Note that the condition 

no = n(z)l~-~ = lira [-iktT(k)] = flP/[1 + inofl'(O)] 
k ~ O  
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o r  

is just  the virial theorem equat ion of  state. 
Let  us first look at the case of  pure hard-sphel~e particles of  diameter  a. 

Then 

go(Z)fl(o'(z) = -[9o(z)eP*(~)]Ee-~*(~)]' = - 9 ~  3(z - a) (5.7) 

where 9~ is the contact  value of  the radial distribution. Hence 

f l (k )  = - 2~zg, c3k k - 27rg~ + - k2// [ (5.8) 

f l  (0 )  -~ - -  rca2 ffa 

and 

~(k) = t iP  - i k  + no~a29~ 1 + 

+ 27rn~ )ca k2a 2 eik~ (5.9) 

On reverse Fourier  transforming,  and setting t = - i k a ,  we have 

t iP f ~~ e tz dt 
n(za) = ~ . j - io~ t + a2no.qa( t  - -  2/t e) + 2rcaZnoga(1/t + 1/t2)e - '  (5.10) 

where #a is determined,  via (5.6), by 

t iP = no(1 + ~Trnoa39,) (5.11) 

Equat ion  (5.10) must  be evaluated numerically, a process that  is greatly 
facilitated by rewriting first as 

_ t iP - 1 ~ t2e 'z dt (5.1 
H ( z a )  2) 

27rnoa3go 21ri j D ( t )  ~ ~ + t ) e - t  

where 

and then as 

n(za) - - -  

D(t)  = 1 - l t2 - -  K t  3, K = 1/2rcnoa39, 

- f l P K  ~ t2et~{1 - [-(1 + t ) e - t / D ( t ) ]  1+E~3} 
2rci , D( t )  - (1 + t ) e - '  dt  

- f l P K  f t2e'~[(1 + t ) e - ' /D( t ) ]  l+Eza~ 
2rci 2 D(t)  - (1 + t)e - t  dt (5.13) 



674 J .K .  Percus 

Fig. 2. Contours for Eq. (5.13). 

Here  the pa th  f rom - i o o  to ioo is closed by an infinite semicircle, with 
Re t ~< 0 for C~, Re t />  0 for  C2, and the origin avoided in each case by a 
small semicircle Re t >~ 0. Then C 1 can be contracted to a circle C~' centered 
on the real axis, and containing the origin and the two negative real roots  of  
D ( t )  = 0, and C2 to a circle C 2' surrounding just  the positive real root  o f  
D ( t )  = 0 (Fig. 2). I t  is o f  course impor tan t  to observe (for C2) that  D ( t )  - 

(1 + t ) e - '  v ~ 0 for Re t >/0  except at t = 0, which a little algebra accom- 
plishes. 2 Numer ica l  integrat ion over  C1' and C 2' is then easy and accurate.  

Two more  points  must  be noted in practice/9) First is that  numerical  
s imulat ion of  an equil ibrium fluid requires not  one, but  two walls, to keep 
the system finite. This requires a source te rm n , [ f ( z )  + cS(L - z)] to replace 
nw 6(z )  in (4.11), but  it is now the nearest  wall tha t  is shielded in (5.2). I f  the 
pat tern  n( z )  - no has, however,  decayed by the posi t ion L of  the second wall, 
then it suffices to make  the replacement  

n(z )  --+ n(z )  + n ( L  - -  z)  - -  n o (5.14) 

and we shall do so. 
Second, in the same numerical  experiments,  it is the mean  density in the 

box f rom 0 to L that  is fixed, not  the asympto t ic  bulk density, which must  
thereby be computed .  But if L is greater  than  the scale of  the profile 
In(z) - no ~ 0 at z --~ L, as above] ,  the relation is readily found:  

ri = ~ In(z) + n ( L  - z)  - no] d z  = n o . +  Z [-n(z) - no] dz 

2fo ~ ; ~ n~ + Z In(z) - no] d z  = no + 2 l i m  eik~[n(z)  - n(O)? d z  
k 0 

2ifl(t)=_(1 +t)e r _  1 + �89 2 + Kt 3, then l(O) = O and 

l'(t) = t213K + (1 -- e-t)/t] 

Hence if t = u + iv = Re i~ 

e-~i~ f ~ p 2 [ 3 K +  f~e~(~ p 

But 

;o (;) R e e ~(p/R)(u+iv) dc~ - ea(Pm)u cos c~ v d~/> 0 for 
--dO 

and so I(t) r O. 
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o r  

ri = no + 2 limFn(k) - (5.15) 
L k~ok 

For (5.9), this reduces to 

3 tiP - no 
= n o + ~ noa t ip (5.16) 

Given tT, no can now be solved by Newton-Raphson iteration, resulting in the 
correction sequence 

3a FO[3P ~P ( f l p ~ Z ] ~ - ,  

t \ no / 4s L Ono no k no / A) 

We further choose tiP(n) 
approximation, 

t P  1 -]- ~] + t] 2 - -  q3  

n (1 - -  /7)3 

where q = rcna3/6. 
In Fig. 3, the profile given by (5.13) and (5.14) is compared with the 

"experimental" value, i.e., the numerical simulation of LiuJ s) For these data, 

2.0- 

L I U  

o o Shielding opproximotion 
no= .619, ,8P= 2 .82  

1.5- 

n(z)  

1,0- 

.5- 

(5.17) 

empirically via the Carnahan-Starling (iv) 

OfiP 1 + 4q + 4q 2 - 4r/3 +/7 4 
On -- (1 -- q)4 (5.18) 

i i 
.5 ,.o ,; 2'.o 215 

z 
in units of core diometer 

Fig. 3. Hard cores bounded by a wall; comparison of  Liu's simulation and the shielding 
approximation at bulk density n = 0.619. 

2.5- 
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with L = 4.5a and r~a 3 = 0.7, we find from (5.17) and (5.18), na 3 = 0.619, 
f iPa 3 = 2.82. Comparison of (5.13) with Liu's results shows that quite a good 
representation is achieved, with some flattening of the peaks and troughs of 
the profile. 

6. FLUID EXTERNAL TO A H A R D  SPHERE 
Let us now generalize our geometry, and imagine the bounding surface 

to be a spherical inclusion, perhaps the prototype of a large molecule. The 
curvature now presents us with, among other things, an additional con- 
trollable parameter  with which to assess our state of knowledge. Suppose then 
that there is a hard sphere of radius R centered at the origin, and we are 
examining the fluid density external to the sphere. Since now 

n(1)fi Vu(1) = -n (1 )e  p~(1) Ve -p"~ = - n w  6(q - R)rl 

the r~ component  of  (4.7) yields 

On(q)  ~ r 1 - r 2 cos 0 
8r~-  + J n 2 ( l '  2) flq~'(r12 ) d2 = n~ 6(r 1 - R) (6.1) 

r12 

where 0 is the angle of r z with respect to rx. The shielding approximation 
used in (5.1) must now be replaced by 

n2(1, 2) ~ [n(q)E(r 2 - rl) + n(rz)E(rl - r2)]nogo(q2)  (6.2) 

Hence, switching from integration coordinates r2, 0 to r2, r12 , we have 

n'(rl)  + - -  In(r2) - n(rO]E(r 1 - r2) 
El 2 

x (rl 2 + r22 - rz2)r2go(rlz)f i(o'(q2) dr2 dra2 = n~ 6 ( q  - R) (6.3) 

where A denotes the triangle relation Ir 2 - r 1 2  t ~< r 1 ~< r 2 q- r12. Assuming 
that R exceeds the range o f  interaction, this reduces to the single restriction 

r12 ~ Jr1 - -  rzl. 
Equation (6.3) can now be handled in standard fashion. Multiply by r, 2 

and take the one-dimensional Fourier transform. We thus require 

n f f f  eikr'n(rl)rz(rli-r22+rZ2)go(r12)flcY(rlz)drldr2dr12 
r l 2  >>-rz- ra >~O 

= I t  f f l  e i k r ' n ( r l ) ( r 2 q - r l ) ( r 2 - r 2 2 - 2 r l r 2 ) g ~  

r~>rz>~0 
0o 02 
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as we l l  as  

677 

fff eiknrt(r2)r2(r12--r22+r22)g~ 1 dr 2 drl2 
rl2~>rl --r2•O 

fff 9~ 
r ~ r l ~ O  

r~>rl~>O 

92 
x - 2 r l  ~ -  i(rl 2 

In terms of 

+ r2)~]drdrl,~(k) (6.5) 

f~(k) = - 2 ~  go(r)fir ( r ) ~  - + dr (6.6) 

of  (5.5), (6.4) thus becomes after a little more algebra 

9 9 2 
i ~ [kr~(k)] + no[f,(O) -f,(k)] ~ r~(k) 

+ no[.f,(O)- f,(k) ] 9  f t ' ( k )  ~ ~(k) - �89 = nwR2e ikR (6.7) 

A convenient form for (6.7) is (after multiplying by k) 

3k { - i k 2  + n ~  - f l (O)]}  &7(k)] - -  9k J + �89176 = -n 'Rgke i k '  
(6.8) 

However, the solution of  (6.8) is not trivial, and we will concentrate upon 
two limiting situations. First, suppose that R is large. Then it is certainly 
preferable to work in terms of density referred to surface: 

nw(n) - n(R + r) (6.9) 
or equivalently 

fi(k) = fiw(k)e ikr (6.1 O) 
so that (6.8) now reads 

(1 -R 9kJ[_ ik2 + n~ - f,(O))]}(1- ~ ~)]rT.(k) 

1 
2R 2 nof('(O)kg~(k) = n,,,k (6.11) 
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or in terms of the plane wall solution t~(k)  of (5.5), 

1 - ~ -  g - ~  R 2R 2 tip tip (6.12) 

For large R, we can drop the second-order terms I/R 2 in a perturbation 
expansion. To this order, we have at once 

~w(k) = ~ r~oo(k) - ~ ~ -  + r~oo(k) (6.13) 

or reverse Fourier transforming, 

n w 1 fo nw(r) = ~-fi n~o(r) -- ~ xn~o'(x) dx (6.14) 

Accurate numerical experiments, however, do not yet exist. As a final 
comment,  since n~(c~) = nw(OO ) = no, we find from (6.14) 

BP i j: 1 = + dx (6.15) 
no L 

The second limit is that of  small R. Rewrite (6.8) in the fashion of (6.12): 

O I k2 o 1 [  ~ ! 1  nwR2 keikr (6.16) 
~-k k~ (k )  ~-k ~(k) + ~-k k~ (k) (O)k~(k) - tip 

and suppose that the particles are pure hard cores of diameter a. In that case, 
a wall with R = a is just another particle, and 

n(r ; a) = nogo(r) (6.17) 

Hence if (6.17) could be solved, it would yield another approximation for the 
pair distribution function. Although this approximation appears to require 
tiP as input, it also yields 

I q grip 1 + ~(k) - (0) (6.18) 

as output, so that tiP is available in self-consistent form. There is yet another 
way of interpreting (6.17) for hard cores with R - a, and that is as a model 
relation between noo and n = nog. In other words, we solve (6.17) for n~,  
using 

~[kt~o(k)] 
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obtaining 

x [1 + n~a2~f0kegk, d k ( f i ~ i k  + - ~ ) ( 0 ) ; o k f i ( k ) d k l  - t k  (6.19) 

so that n~ can be formed from any believable go. Note, however, that 
recomputation of [d~ - i (no/k)](O) from (6.19) produces an identity, so that 
this parameter must be supplied externally. 

7. S O F T  S P H E R E S  B O U N D E D  BY A S O F T  W A L L  

We return to the case of a planar wall, but relax the hard-wall character 
of both the bounding wall and interparticle interaction. If the wall is not hard 
but instead represents a potential u, we cannot make the replacement n Vfiu 
- n  w 3(z)d in (4.71). In principle, this poses no difficulty, but it does preclude 
the solution of (5.3) by simple Fourier transform. Let us suppose, however, 
that when the wall potential differs from 0 or oo, it changes rapidly, e.g., a 
hard wall followed by a deep but narrow attractive wall. Since ne r is con- 
tinuous together with its derivative even for discontinuous u, the consequent 
slow variation of ne pu allows us to make the approximation 

n V f lu  = - n e  -p" V e  -pu ~- - n , , e  ~'~ V e  - ~  

for any nominal wall position. Since the wall pressure, or wall force per unit 
area, is given by P~ = ~ n ( r ) [ -  Vu(r)]- s dz, then in this approximation 

t i p  = , nwePU~(e- ~,(z)), dz  ~- - nwe pu~ 
,)-oo 

We conclude that 

n(z)  V f lu ( z )  ~ - t i p  Ve- p,{~t (7.1) 

so that now (5.4) is replaced by 

fl p (  e - P"(~))( k ) 
fi(k) = (7.2) 

1 + ~no[A(k) -A(0)J/k 
Equally well, if nh(z ) is the hard-wall solution of (5.5), n(z)  can now be written 
via the convolution 

n(z)  = f nh(z -- w) (e - ' " (w) )  ' d w  (7.3) 

which is just a running average with the weight function (e-B"(w)) '. 
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By virtue of (7.13), we can once more concentrate upon the pure hard- 
wall case, with 

(e-~U(z~)(k) = l/k (7.4) 

It should of course be observed that the shielding approximation decreases 
in accuracy when the wall is sticky, since the resulting particle layer extends 
the influence of the wall both normally and transversely. At any rate, let us 
examine the nature of the density profile in the approximation (5.4) or (7.2). 
For  this purpose, it is best to rewrite (5.4) as 

f: (f0 )] nh(k) = tiP 1 - 2rrn o go(Z)f105'(z) z 1 ikz- eikz z2 dz dz -1 (7.5) 

Perhaps the leading distinction is between those profiles that simply decay to 
the bulk value n o and those that decay with oscillation, a distinction that can 
be made on the basis of  the poles of(7.4), i.e., of  the zeros of  its denominator. 
Let us set t -- ik, and write the denominator as 

fo ~ Den(t) =- 1 + 2rmo go (z ) [ -  tic) +'(z) zt 

f :  (fo' e ~ ' - I  z2 dz)dz  (7.6) - 2rCno go(Z)flr 

where 05 has been decomposed into 05 = 05 + + 05_, a repulsive part satisfying 
-/~05 +' ~> 0 and an attractive part with flq~_' ) 0. For  asymptotic decay of 
nh(z ) as e -~ ,  Den(t) must have t = e as its root of smallest real part. If 05 is 
purely repulsive, 05_ = 0, clearly Den(zt) > 0 for real t, so that only decay with 
oscillation can occur. If 05_ r 0 and the nonvanishing domain of 05_ exceeds 
the finite domain of 05+, which is normally the case, then Den(t) must ulti- 
mately go negative, leading to a pure exponential decay component. However, 
the slowest decay (smallest Re t) can indeed be oscillatory. 

For  further analysis, a further approximation will be convenient, along 
the lines of (7.1). We suppose that the interaction 05 also consists of a h a r d  
core blending into a short-range attraction (or repulsion). Then, since ge ~0 is 
continuous together with its first three derivatives, and hence slowly varying, 
we have 

go(r) Vfi05(r) = --go(r)e ~r Ve-  ~4,(r) = _g~e~r V e- ~r 

for a nominal core diameter a. A typical plot of go eee for a high-density 
Lennard-Jones fluid 3 is shown in Fig. 4. Although the approximate constancy 
deteriorates away from the core, this is where the multiplier (e - ~  - 1)' has 
already become small. 

3 Data kindly supplied by M. Rao. 
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geB4 ' 

o ~ a : o  #.~ 2[8 -I I/~ DISTANCE 

.I ( e - ~  - I)' 

- 2  

Fig. 4. Plots o f # f  r and (e ~#r - l)' for uniform Lennard-Jones fluid. r = V(r) - V(ro), with 
V(r) = 4e{[a(r)J 12 - [a(r)6]) for r ~ r0; % = 2.56, na  3 = 0.76, kT/e = 0.704; distance in units 
Of (7. 

T h e  c o n s t a n t  g a e  p~~ c a n  n o w  b e  e v a l u a t e d  f r o m  t h e  v i r i a l  p r e s s u r e :  

T h u s  

gae #~~ ~- ( t i P  - n o ) / n f  B2 (7 .7 )  

w h e r e  

B2 = 2re (1 - e -Pr162  (7 .8 )  
0 

is  t h e  u s u a l  0 - d e n s i t y  s e c o n d  v i r i a l  c o e f f i c i e n t .  R e t u r n i n g  t o  (7 .5) ,  t h e n  

1 - -  e ikz z2 dz) dz 
/ 

; (fl ) ~- - 2 ~ n o g a e  ~ ~  (e -zo(~) - 1) '  z 1 - e ikz ~ . ~  z2 dz dz 

fO ~~ 1 - -  e ikz = 27~nog~e #r176 (e -#~(~) - 1) - - -  z 2 d z  
- i k z  

fo=~ e ikz -- l t P  - no 2re (e -~r 1)z dz  
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Hence (7.5) becomes 

( i / k ) f l P  

~h(k)  = 1 + [ ( t i p  - - n o ) / n o ] [ f ( k ) / f ( O ) ]  

where 

(7.9) 

0 

~ 

d 

o o 

d 
0.00 

I I I I I I I 
2,00 4,00 600. 8.00 I0.00 12.00 14.00 

Z 

Fig. 5. Density profile at P/kT = n for wall-bounded fluid of Fig. 4. 

f S e ikz - 1 
f ( k )  = 2~z -/k (1 - e-~r dz  

= B2 = 2re f o  (1 - e-~r 2 dz  f(o) 

An immediate  consequence of  th is  approximat ion  is that  if n~. = tiP = no 
(but B z ~ 0), then the profile is perfectly flat: n(z )  = no for z > 0. A com- 
parison (Fig. 5) with numerical simulation experiments (see footnote  3) shows 
only a small deviation from this rather  stringent result. 

As with (7.5), the qualitative behavior o f  the general profile is relatively 
easy to assess. Again, we go over to i k  = t: 

f S  e tz - 1 -~r 2 dz  f ( -  it) = 2~ (1 - e 
tz  

fo r e  ~ - 1 
- 2~  tz (e-~r  - -  1)22 dz  (7.10)  
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where now q~ = q~+ + ~b-, + q~-+ ~> 0. Note first that this definition ofq~ • shares 
the major property of that of (7.6): typically, ~b + exists in a finite domain, 
followed by the nonvanishing domain of ~b-. Thus for any attraction at all, 
f ( - i t )  ultimately goes negative for large, real t. Since (t iP - no)If(O) > O, 
according to (7.7), this signals a pure exponential decay component. At high 
temperature, where repulsion dominates, we expect the slowest decay to be 
oscillatory, and it is in principle not difficult to find the temperature at which 
a real exponent bifurcates into two complex ones: we need both Det (t) = 0 
and ~[Det( t )] /Bt  = 0, the latter now reading 

fo ~ - tz)e t ~ -  l (1 - e -~r  
tz 

f ~ (1 - tz)e ~ - 1 (ep~ (~) 1 ) z2dz  
o tz 

(7.11) 

The local density is not the only useful characterization of a nonuniform 
fluid. Among the other local quantities that we can define, the local pressure 
tensor enters prominently into hydrodynamic consequences of  non- 
uniformity. Let us briefly investigate this parameter. We consider the pressure 
vector or momentum transport across a face A 2 of  normal s centered at R, 
as indicated in Fig. 6. In the absence of  an external potential, this is clearly 
given by 

P~(R) = ~ n(R)s A2 

Ixo ~ XI < A/2 
lYo - Yl < A/2 

n2(r, r') Vq~(r - r') dr dr' (7.12) 

// 
~PL zl ? J,/// 

R �9 
x 

/ 
/ 

/ /  

/ /  

Fig. 6. Geometry of pressure tensor computation. 
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Since 

lim ( 1 / A ) e ( l x o  - X l  - �89 = 3(Xo - X )  
~,~0 

and similarly for y, and we readily find 

z - Z  Z - z '  
- -  r t r~ Z' %" ~ -  r 

z - -  z -  

Eq. (7.12) becomes 

Pz(R) = ~ n(R)s - f f n2(r, r') Vqa(r, r')e(z - Z)E(Z - z') 

• + - X  6 ~ _ z , y  + - - - - y - Y  drdr' 
\ Z  - -  g Z - -  g ~ Z - -  Z 

(7.13) 

Two cases will be of interest for our wall-bounded system with transla- 
tion invariance in the x-y  plane. First is the normal pressure, 2 being the 
normal direction, for which PN(R) is unchanged by averaging over the X Y  
plane of area, say, A :  

1 'H 
PN(Z) = ~ n(Z)s -- ~ nz(r, r') V0(r - r')~(z - Z)e(Z - z') dr dr' 

1 n ( z ) 2 -  1 ~ = ~ ~ n2(r, r') VO(r - r')e(Z - z') dr dr' (7.14) 

(the difference of the integrands is antisymmetric in r and r'). Since we have 
tacitly assumed the absence of an external potential, other than the space- 
limiting wall, in deriving (7.13), the BBGKY equation 

(. 
Vn(z')/fl - ln2(r ,  r') Vq~(r - r') dr = P 6(z')s 

converts this at once to 

P u ( z )  = P2 (7.15) 

The normal pressure is always equal to the bulk pressure, a fact that we have 
elaborated upon in Section 4. 

The second case is that of the tangential pressure, say across a face with 
normal ~ in the same physical situation. By cyclic permutation, we replace 
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(7.13) by  

fJ Px(R) ~- ~ n(R))~ - n2(r, r ' )  VqS(r - r ')E(x - X)E(X - x') 

a(X-Xy ' x - x '  ) 
x \ x - - x '  +----~"-Y-Yx- 

x , ~ ( x - _ X z ,  X - x ' )  
\ x  - x' + x ~ x  , z - Z dr dr' (7 . !6)  

In tegra t ion ,  over  Y and  then X, is still easy, and  yields 

P T ( Z )  = ~ n(Z)~ - ~ nz(r, r ')  V0( r  - r ' )  

• 5 - - 7  E[U2--~-- (~ - z ) ,  dr dr' 

= ~ n(Z)2 -- -~ n,(r,_ r ' )  VqS(r - r ' )  Xz -- Xz, e(z - Z)e(Z - z') dr dr' 

n2(r, r ' )  V4~(r - r ' )  x - x '  z -  z '  E(Z -- z ' )  dr dr '  (7.17) 

which  is no  longer  trivial, By  x par i ty ,  on ly  the  x c o m p o n e n t  exists, and  this is 
numer ica l ly  equal  to the y c o m p o n e n t .  Thus  we can  write 

1 1 H Pr(Z) = -fl n(Z) - ~ n2(r, r')qS'(r --  r ' )  

(x - x ')  2 + (y  - -y , )2  

Ir - r l ( z  - z ' )  
E(Z -- z ' )  dr dr '  (7.18) 

A conven i en t  c o m b i n a t i o n  to cons ider  is the difference 

1if Pr(Z) - PN(Z) = ~-~ n~(r, r')~b'(r -- r ' )  

2(z -- z ')  2 -- (x -- x ' )  z- -- (y  - - / ) 2  
x Ir -- r '](z -- z ' )  E(Z -- z ' )  dr  dr '  

(7.19) 

which  is related to surface tens ion  for  a two-phase  interface.  
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Le t  us  n o w  m a k e  the  sh ie ld ing  a p p r o x i m a t i o n :  

 ~ P r ( Z )  - P N ( Z )  = ~ n(z <)9o(r -- r')~b'(r - r ' )  

2(z - z ' )  2 - (x - x ' )  2 - (y  - y,)2 
X 

[r - r ' I(z - z ' )  
r  - z') dr dr' 

(7.20) 

whe re  

AP(z)  = n(z)* W ( z )  (7.23) 

W(z )  = i n  o go(R)~) ' (R)[3(R  2 - z 2) - R 2 in R/z]  dr 

Or,  b y  e x p a n d i n g  (7.22) a b o u t  k = 0, 

R e ik~ - 1 d R  f:9o(R)4Y(R)fo ( 3 ~ 2 - R 2 ) - - ~ - - d ~  

,fo ~ = . . . .  4 R 4 9 o ( R ) ( f ( R )  dR( i k )  + 

I n t e g r a t i n g  first  ove r  x a n d  x '  r equ i r e s  

fo ~ ;: f [ ( p 2  + zZ)1/2](2z 2 _ p2)2rc p dp = 2z~ f ( R ) ( 3 z  2 - R2 )R  d R  

f: = - 2~ f ( R ) ( 3 z  2 - R 2 ) R  d R  
z 

for  o d d  f ,  so t h a t  (7.20) b e c o m e s  

f; f: A P ( Z )  = Zmo n(z<) ngo(R)~) ' (R ) 
- g ,  

3(z - z ' )  - R 2 
x d R  E(Z - z ')  dz dz' (7.21) 

Z - -  Z ~ 

W e  can  n o w  F o u r i e r  t r a n s f o r m  to  y ie ld ,  for  k # 0, 

A P ( k )  = nnofi(k) 9o(R)qr  -( f d~ d R  (7.22) 
0 

w h i c h  is e m i n e n t l y  c o m p u t a b l e .  H o w e v e r ,  the  q u a l i t a t i v e  n a t u r e  o f  A P  is bes t  
a p p r e c i a t e d  in real  space .  By reverse  F o u r i e r  t r a n s f o r m i n g  (7.22), we can  
o b t a i n  A P  in c o n v o l u t i o n  f o r m  
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we also have 

valid when n(z) is not changing too rapidly. 

8. C O M P L E X  W A L L  C O N F I G U R A T I O N S  

8,1. Small  Curvature  

We proceed now to hard boundaries that are not simply planar or 
spherical. The general problem is of  course more involved than that of  a 
spherical boundary alone, which we did not solve completely even in the 
context of  the shielding approximation.  However, we can obtain a quick 
estimate for a single surface of small local curvature by taking advantage of 
the spherical case in the small-curvature limit, together with reasonable 
locality assumptions. For  spherical boundary,  we have seen [Eqs. (6.14), 
(6.15)] that, measuring from the surface 

fo ; ] nw(r ) = n~(r )  + - -  no~(r) xnoo'(x) d x  - n ~ ( o c )  x n ~ ' ( x )  d x  (8.1) 
no 

where K = 1/R is the curvature of  the sphere. For  the moment ,  we leave 
unspecified the proper generalization of K to a nonspherical surface. 

Suppose now that we have a bounding surface whose curvature is small 
on the scale of  the correlation function 9 - 1. To make contact with the locally 
flat case, it is appropriate  to introduce a new coordinate system R = (Z, X), 
with Z = Ro, X = R1, Y = R2.  Here Z is to measure distance to the surface 
on a trajectory normal to equally spaced surfaces. Thus, the hard wall is 
defined by 

and we require 

Z(r)<O (8.2) 

A 
d Z  = d Z ( V Z ' V ) Z  or ]VZ[ 2 = 1 

We further define X and Y to be constant along V Z :  

V X . V Z  = V Y ' V Z  = 0 

A consequence of (8.3) and (8.4) that we will need later is that 

3ra/~3Z = (c3R/c3r)2o I = {(3R/c3r)r[~3R/~r(~3R/Or) T] - 1}~ o 

= ~ (~3R/~r)2a 6~o = ORo/Or~ 

(8.3) 

(8.4) 
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o r  

8r/SZ = V Z  (8.5) 

N o w  a surface d e m e n t  dX dY  continues to a tube measured  by Z which 
is a dis torted por t ion  of  the conical vo lume determined by the surface 
curvature.  Thus,  we would expect (8.1) to generalize to 

K(X) 
n~,(R) = no~(Z) + - -  

no 

E fo 1 • n . ( Z )  xn . ' (x )  dx - n.(o~) xn~(x) dx (8.6) 
0 

whose validity we will now verify. We proceed as follows. 
Since the wall potent ial  satisfies 

e -t~u(r) = e ( Z ( r ) )  (8 .7)  

the exact first B B G K Y  equat ion becomes 

Vn(r) + fn2( r ,  r ') V/?4~(r - r ') dr' = nw(X(r)) Ve(Z(r)) (8.8) 

where nw(x) is the density at the wall location Z = 0. We will assess shielding 
in terms of  the Z distance to the wall, so that  (8.8) is to be approx ima ted  by 

Vn(r) + no f[n(r)e(Z(r') - Z(r))  + n( r ' ) , (Z(r )  - Z( r ' ) ) ]  

x 9o(r - r ')  V/~b(r - r ') dr '  = nw(X(r)) Ve(Z(r)) (8.9) 

simplifying to 

Vn(r) + n o f [ n ( r ' )  - n(r)]E(Z(r) - Z(r ' ))  

x 9o(r - r ')  V/~b(r - r ') dr '  = nw(X(r)) Ve(Z(r ' ))  (8.10) 

I f  we measure  density as well in the new coordinate  system, 

n(r) = n~(R(r')) (8.11) 

then with V denot ing 8/8R, (8.10) can be writ ten as well as 

Vnw(R) + no f [ n ~ ( R ' )  - n~(R)]e(Z - Z ' )  

x 9o(r - r ') V/3q~(r - r ') dr '  = nw(X) Ve(Z) (8.12) 

But since (8.12) is a l ready an approx imat ion ,  a consistency p rob lem must  be 
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noted:  Eq. (8.12) is a three-vector  equat ion for  the scalar nw(R) and its 
restriction 

nw(X ) = nw(0, X) (8.13) 

and hence need not  be soluble. To  avoid this difficulty, we shall consider 
only the Z componen t ,  

nw(R) + no j[nw(R') - Z ' )  

, 8 
x 9o(r - r ) ~ -  flq~(r - r ')  dr' = nw(X ) 8(Z) (8.14) 

which is all that  would exist for the p lanar  wall case. 
For  analytic tractabili ty,  we now introduce the small -curvature  assump-  

tion in a fashion suggested by the case of  a spherical bounda ry  of  radius a. In 
the latter spherical case, with a + R, 0, q~ measured  f rom the center of  the 
sphere, the approx ima te  t r ans fo rmat ion  can be writ ten as 

z/a=(1 + R / a )  c o s 0 -  1 

x/a = (1 + R/a)sin 0cos  q~ (8.15) 
y /a  = (1 + R/a) sin 0 sin q~ 

and indeed R is the physical distance to the surface a long its own gradient.  
In general, then, we imagine X and Y to be angular  coordinates ,  and so set 

r = (1/7)A(TZ, X) (8.16) 

where A(0) = 0, the limit 7 -* 0 then cor responding  to indefinite expansion 
of  the surface and its equidistant  neighbors  abou t  the origin, the condit ions 
(8.3) and (8.4), however ,  being main ta ined  in the process. 

We must  now set up (8.14) to be suitable for  taking the limit o f  small y. 
To  this end, we observe that  Ir - r'l in the integrand of  (8.14) is bounded  
for  shor t - range  q~, and hence f rom (8.16), Ix - x'[ -*  0 as 7 ~ 0. Thus we will 
el iminate the pr imed variables by defining 

- ~ '  = yr ~ = (TZ, X) (8.17) 
and setting 

q = r -  r '  (8.18) 

Since ~b(r - r ')  = ~b(/r - r'l), (8.14) becomes in obvious  nota t ion  

nw(Z , X) + no f [nw(Z - ~o, X - 7~) - nw(Z, X)]e(~o) 
8 Z  

8A~ 1 , 3 
x go(r/) Z r/~ ~ -  ~ flq5 (r/) d r / =  nw(X) 6(Z) (8.19) 

U ~ o q  
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Expanding r - r' in ~, we have 

OA~ 7 82A~ 
~ = E b~o  r - ~ Z ~ .  a~v &r + -- (8.20) 

together with its inverse 

~ = L ~ ~ - ~ Z ~A. ~Av ~"~ + " (8.21) 

Since IVZl 2 --- E (0~o /a&)  2 = 1, then 

8~o 
r/~ = L - ~ u  r/u (8.22) 

in the component VZ of r/, as in y. (OAffO~o)r/~, according to (8.5). Thus to 
first order in y, 

8 n~(Z, X) + no n~, Z - rlz + ~ ~ 8A u SAy ~lurl~' X 8Z 

8X - Y V - 8 2 ~ ~  17dlO~lzgo(11) ~ 
- ' ~ ~11~ '  - n'*(Z' X))E( 11~ 2 "-" SA~ SA~ 

x qS(//) a3 / /=  n~(X) 6(Z) (8.23) 

or, expanding further, 

8 
f 1 qS'(r/) d3r/ nw(Z, X) + n o [n~(Z - q2, ~)  - nw(Z, X)]6(~l~)~lzgo(q) 

8X 

X E(IJz)rlzgo(rl) 1 qS'(r/) d3r/= nw(X) 6(Z) (8.24) 
q 

where all partial derivatives are to be evaluated at ~ o  = yZ = 0. 
The correction term in (8.24) has bilinear and trilinear contributions in 

the t/=. By q parity perpendicular to VZ, the bilinear terms reqmre considera- 
tion only of (SX/cgAu) ~ = (SX/S&) OA,/O~o = 0 and hence do not appear. 
Similarly, for the trilinear terms, we need only ~2~0/OA= 2 for a = z or ~ = p, q 
perpendicular to VZ. But 

O2~o/0Az2 ~--- 2 (~32~o/c3Au c3Av)(d~to/dA,) 8Aff8~o = 0 

1 
~ (cqAff&~o)(8/0A0(~.~o/0A~,) 2 = 0 
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since [ V Z [  2 = 1. Of course ~p2 and %2 give equal contributions, and so 

E (6~2~'~0/0Au r  2 "4- ~ 2 ~ o / ~ A q 2 ) l l p 2  = (1/]2 2) Wo221--(q 2 -- //z 2) 

yielding the further simplification 

nw(Z, X) + no[nw(Z - nz, X) - nw(Z, X)]6(qz)~/zgo(q) _1 fl~b'(q) d3~/ 
8Z tl 

no 8 ( 1 
.z, ) (,1~,7~(,1 - ,1/)go(,1) + 5 -  (v2z )~  ~ .J n w ( Z  - X E ~ 2. 

x qS'(r/) dZr/= nw(X ) b(Z) (8.25) 

Equation (8.25) can be solved by one-dimensional Fourier transform: 

[ - i k  + n~ f ~(z)(e'~ - l)g~ fl4)'(r) d3r - n~ (v2z)~ f 2 

l z  2 ] x ~ r (r - z2)flcy(r) d3r ~(k,  X) = nw(X) (8.26) 

This is further reduced by inserting r~o(k ) of (5.5) and observing that since 

f fo(r)Z fl~'(r)f(z)d3r=27zf;ffo(r)~c~'(r)[foZf(z)dZ]dr (8.27) 

while 

fo ( (r 2 - z 2 ) z e  ik~ dZ = 2 1 c~ 1 [k ~ik (i[c) s z(e ~k~ - 1) dz (8.28) 

it follows that 

no /'[E(z)~(r 2 _ z2)eikZgo(r) z_ flcy(r) d3r 
d F 

_~1  8 
i-k 8ik 

,(o = _ _  . 

ik OTk 

Hence (8.26) can be written as 

[ t i ~ k )  ~(VZZ)~ 1 '  flP q_  j w(k, x) =  w(x) 

and solved to first order in (V2Z)o as 

1 ] I _ i k + n o  fE(z)(eikz z fl~,(r)d3r] (ik) 2 - 1)g~ r 

ik/ ~ (k) (8.29) 

(8.30) 

(8.31) 
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Reverse Fourier transforming, 

nw(Z, X) = n~'(X~)no~(Z)~p - �89 f~ zn~'(Z) dZ (8.32) 

and, since nw(oo, X) = no, then 

[ l nw(X)=/3P 1 + 2  no 

yielding the final expression 

1 (V2Z)o 
nw(Z , X) = no~(Z) + 

2 no 

x[n~(Z) f;zno~'(z)dz-n~o(o~)ffzno~'(z)dz I (8.34) 

We conclude that the educated guess (8.6) is indeed correct to first order 
in the curvature, and that the relevant curvature is 

K(X) = l(VZZ)z=o (8.35) 

8.2. Mul t ip le  Surfaces 

There is another generalization, which makes contact with recent experi- 
mental work, ~8) and which can be analyzed completely in the context of the 
shielding approximation. It is that in which the wall consists of two or more 
separate boundaries. Consider two walls Wx and w e and a designation of 
particle ordering such that if particle 1 is closer to w~ than particle 2, then 
it is automatically further from the wall w z (Fig. 7). Let us then examine the 
pair distribution n2(1, 21wlw2). Applying the shielding ansatz twice, we have 

n2(1, 21wl, we) = n2(112, w~, w2)n(2lw I , w2) ~ n2(112, wl)n(2]wl, We) 

n2(1, 21wl) n(2L t wx)n(lhwl) 
n(21wl) n(21wl' w2) = - - n ( 2 [ w l )  n(21wl, w2) 

n( 211)n( l lw ~ ) 
n(21wl) 

n(2rwl, w2) 

o r  

n2(1, 2) n(1Lwl) 
n2(1, 21wa, w2) ~ n(21wx, wz) (8.36) 

n(1) n(Zlw0 
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Q 
Q 

w 2 

Fig. 7. Shielding configuration for two walls. 

On the other hand, reversing the roles of 1 and 2, we also have 

n2(1, 2) n(21w2) , ,  
n2(1, 2lw,, w2) ~ ~(~)- ~ n t , l w , ,  we) (8.37) 

Equations (8.36) and (8.37) are consistent if 

n(2lWx, we)n(2) /n(21wOn(2lwz)  = n(llw~, w2)n(1) /n ( l lwOn( l lwz)  

and hence if 

n(llwl, w2) = C[n( l lwOn( l lw2) /n (1 ) ]  (8.38) 

for a suitable contact C. Under these circumstances, (8.36) and (8.37) reduce 
to 

n2(1 ' 2[Wl ' w2 ) = c n z ( 1 ,  2 )  n(l lwl)n(21w2) (8.39) 
n(1)n(2) 

where, it must be emphasized, particle 1 is closer to wl, particle 2 to w z. 
Suppose there is no external field other than the walls. If  the walls are 

separated sufficiently from any point rl that the fluid is guaranteed uniform 
at r~, evaluation of (8.36) yields C = 1, so that 

n(llwl, w2) = n(l lwa)n(2lw2)/no (8.40) 

Equation (8.40) is a generalized superposition principle: if w~ and w 2 represent 
other particles at, say points 2 and 3, it becomes 

n3(1, 2, 3)/n2(2, 3) = n2(1, 2)n2(1, 3)/no 3 

the usual Kirkwood superposition. Equation (8.39), on the other hand, yields 

n4(1, 2, 3, 4)/n2(3, 4) = nz(1 , 2)n2(1, 3)n2(2, 4)/no 4 

where 1 is closer to 3 than to 4, and 2 closer to 4, a modified superposition 
principle. 

To the extent that (8.40) is valid, it offers an immediate solution to multi- 
boundary problems. For example, consider the force between parallel planes 
of separation z immersed in a fluid of bulk density no, pressure P (Fig. 8). The 
force is proportional to the wall pressure and hence to the wall density. 
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Fig. 8. Wall geometry for Eq.~ 

~Z 

where 

x = -- rCno R29o(R)flc~'(R) dR, 
0 

which one can compare with 

According to (8.40), taking particle 1 at the wall wl (recalling that the wall 
location is defined by its exclusion of particle centers), we have 4 

n(wl]wl, w2) = (flP/no)n(z[w2) (8.41) 

In the experiments alluded to, a stack of separated lamellae is monitored 
for intersurface distance as a function of the bulk pressure of  surrounding 
water. The spacing is determined by the outer (two) lamellae, which must 
balance external pressure P with the force n(w)/fl due to the fluid extending 
to the next lamellar surface, and the van der Waals attraction - P(z) between 
it and its neighbor. Thus, P = n ( w l l w l ,  w2)/ f l  - P(z), so that to the extent that 
water can be regarded as a simple fluid, Eq. (8,41) implies 

P(z) = P[n(zlw2) - no]/no (8.42) 

What  we can do quite easily is see how experimental observation might be 
used to obtain the short-range surface-surface van der Waals interaction. 
Consider, for example, the high-pressure region, in which case we are 
interested in low z. Now for z less than core diameter a [4~(z) ~ 0 for z < a], 
(5.3) becomes 

- -  + ~cn(z) = tiP 6(z) + ~' n(z") dz" dz' (8.43) 

x' = -2~n0  f o  go(R)flc~'(R) dr 

3(tiP - no)/n o = - 2 g n  o R3ffo(R)fl(o'(R) dR 

4 See Ref. 19 for an alternative formalism. 
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by writing 

tr = (3/2noa)(flP - no), K' = (3/noa'3)(tiP - no) (8.44) 

a and a' being of the order of the core size. 
Equation (8.43), as a linear differential equation in 

f o fo : ' n ( z " )dz 'd z '  

solves as a sum of  three exponentials. For  large tiP~no, and hence large ~: and 
K', one readily finds 

n(z) = tiP{e -~z + (/s 1/2 sinh[(k'/k)z]} (8.45) 

which is to be inserted into (8.42). On the other hand, for large P, since P(z) 
will certainly not rise as rapidly as P, the lamellar spacing should be deter- 
mined simply by n(z) = no, or z = to-1 in(tiP/no): 

2 In(tiP/no) 
z -~ ~-a ~ P ~ 0  (8.46) 

This region has not yet been attained. 

9. C O R R E C T I O N  S E Q U E N C E S  

The shielding approximation is of course just a first step. It is best, but 
hardly perfect, for describing normal correlations and surely inadequate for 
describing transverse correlations. There are a number of  techniques that can 
be used to improve the accuracy of  these incompletely shielded correlations, 
and we will now discuss a few of  these, mainly in the context of the pair 
distribution. 

The ansatz (2.4), as we have noted, is clearly unsuitable for large separa- 
tion, where we should have n2(r, r') ~ n(r)n(r'). One way of  stating this is in 
the form 

n(211, w) = ~r(211, w)n(ZJ1) + [1 - a(211, w)]n(2rw) (9.1) 

where zl < z2. Here the "shadow funct ion" ~r ~ 1 when particle 1 blocks 
particle 2's view of the wall, but ~r ~ 0 when particle 1 is out of the way. We 
further know from an analysis of  long-range transverse correlations that in 
its decaying phase, ~r has the form 

~r(211, w) ,,~ a(zl,  z.2)Ko(0CIx I - -  X2[ ) (9.2) 

when the primary mechanism for transverse correlations is the excitation and 
quenching of  capillary waves. 

While the direct physical significance of  (9.2) recommends it as the basis 
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of a correction procedure, this has yet to be carried out. The more formal 
technique of using higher order members of the BBGKY hierarchy to correct 
the earlier equations is, however, quite easy to introduce, and so we turn 
instead to the topic. We again base our analysis on the fundamental 

Van(l) + n(l) V/~u(1) + In2(1, 2) Vl/~qS(1, 2)d2 = 0 (9.3) 

but instead of inserting some inspired guess for n2, we introduce n 2 via the 
next equation, 

Vln2(1, 2) + n2(1, 2)[Vaflu(1) + Vlfiq~(1, 2)] 

+ fn3(1 , 2, 3) V~flqS(l, 3) d3 = 0 (9.4) 

or via its symmetrized version 

(V~ + Vz)n2(1, 2) + nz(1, 2)(V 1 + V2)[/~u(1) +/~u(2)] 

+ fn3(1, 2, 3)(V~ + V2)[/~q~(1, 3) +/~b(2, 3)] d3 = 0 (9.5) 

and confine our inspired guesswork to n3, whose effect upon n2 is now once 
removed. 

As a trivial example suppose that we were to approximate n2(1, 2) by its 
bulk system value n2o(1 , 2). Since, for a uniform system, 

fn2o(1, 2) Va/~b(1, 2) - V l n o  d2 0 

(9.3) reduces to 

so that 

Van(l) + n(1) V/~u(1) = 0 (9.6) 

n(1) = no e-pu(1) (9.7) 

which for a hard-wall potential would cause the density to simply drop from 
its bulk value of no to 0 at the wall. But suppose instead that we approximate 
n3(1, 2, 3) in (9.5) by its bulk value n3o(1, 2, 3). Since 

fn3o(1, 2, 3)[Va/~b(1, 3) + V2/~4~(2, 3)1 -(Vx d3 + V2)n2o(l, 2) 0 

(9.4) then yields 

(V 1 + Vz)n2(1, 2) + n2(1, 2)[V/~u(1) + V/~u(2)] = 0 (9.8) 
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with the solution 

nz(1, 2) = nzo(1, 2)e -pE"C1)+"(2)3 (9.9) 

Now inserting (9.9) into (9.3), we have 

Vl[n(1)e p"(1)] + fnzo(1, 2)e -~u~2) Vlfl~b(1, 2) d2 = 0 (9.10) 

If  u represents a wall to the left of z = 0, then (9.9) simply cuts off nz(1, 2) 
at the wall, and (9.10) integrates to 

C fo~ n(1)e ~"(1) = no + no 2 go(1 - 2) fl~b(1 - 2) dZx2 dz2 dZl 
d z 1  

f7 = no - 2~no  2 (~R 3 - � 8 9  2 + ~z l3 )g (R) f lO~' (R)  d R  (9.11) 
1 

which has a reasonable initial decay from the correct nw but no further 
oscillational structure. 

To improve the inserted function n3, we now use the shielding 
approximation that was reasonably effective for n2. As we have seen in 
Section 2, there are strong and weak versions of shielding, depending upon 
whether one particle shields the other two from the wall, or a pair of par- 
ticles shields the third. In the first case, according to (2.17), 

n3(1, 2, 31w) = [n(r<lw)/no]n3o(1, 2, 3) (9.12) 

where r< denotes the closest of particles 1, 2, 3, so that (9.5) becomes 

(V1 + Vz)nz(1, Z) + nz(1, 2)(V~ + Vz)[flu(1 ) + flu(Z)] 

+ (1/no) fn3o(1, Z, 3)n(r<) 

x (Vl + Vz)[fl~,b(1, 3) + flqS(2, 3)3 d3 = 0 (9.13) 

Again using the bulk information 

fn3o(1, 2, + + d3 = 0 3)(Vl Vz)[fl4)(1, 3) fl~b(2, 3)] 

we can write (9.13) as 

(V~ + Vz)nz(1, 2) + nz(1, 2)(V~ + Vz)[flu(1) + flu(2)] 

+ (1/no) fn3o(1, Z, 3)In(r<) - F/(rmin) ] 

x (V, + Vz)[flq~(1, 3) + fl~b(2, 3)3 d3 = 0 (9.14) 
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where rmi n is the nearest of particles 1 and 2, and then as 

(63 63) n2(1'2) n2(1,2) (63 ~OZ7 ) 
~z~ + ~ z  2 no2go(1, 2) + no2go(l, 2) ~Zl + [flu(l) + flu(2)] 

ffZmmg3o(1,2,3) 63 
= no ngo(1, 2) [rt(z3) -- rt(Zmin)] ~ 

x [fl~b(1, 3) + fl4~(2, 3)] dz 3 d2x3 (9.15) 

where g3o = n3o/no 3. If u represents a hard wall at z = 0, (9.15) yields after a 
little algebra 

n2(1,2) _ ff~min g30(1,2,3) s 63 
no2#o(1, 2) 1 + no 9o(1, 2) In(z) -- no] dz &~-3 

3 

x [fl~b(1, 3) + fl~b(2, 3)] dz 3 d2x3 (9.16) 

for z~, z 2 >~ 0. The consequences of the presumably superior approximation 
(9.16) are now under investigation. 

In the Weak version of shielding, (9.12) is replaced by (2.16): 

n3(1 , 2, 3[w) = n3o(1, 2, 3)[nz(r <, rM[w)/n2o(r <, rM)] (9.17) 

Equation (9.5) yields 

n2(1 , 2) n2(1 , 2) 
(Vl +V2) + 

n2o(1, 2) n2o(1, 2) 
(V1 + Vz)[flu(1) + flu(2)] 

_ n3o(1, 2, 3) ('/n2(r, - rM) V3[fl~b(1, 3) + fl~b(2, 3)3 d3 
/720(1 , 2) .) /720(r , rM) 

(9.18) 

which is readily transformed to 

(63 63) n2(1'2) n2(1,2) (63 ~z2) 
~z~ + 0~2 n2o(1, 2) + n2o(1, 2) ~ + [flu(l) + flu(2)3 

f n3o(1, 2, 3)(na(rr~n,r_3) n 2 ( q , r 2 ) . ~  
=J~<Zmax ~ 1 , 2 )  \/'/20(rmin, r3 n2o(rt,r2)/63z 3 

x [flq~(1, 3) + flq~(2, 3)3 d3 (9.19) 

Thus we have created a self-contained approximation for n2(1, 2)/n2o(1, 2) 
whose analytic solvability depends very much on the form of n3o that is 
chosen. Although the resulting n 2 need not be highly accurate, e.g., for trans- 
verse correlations, its substitution into (9.3) should result in a considerable 
improvement for the profile n(1). 
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10. C O N C L U S I O N  

We have examined  classical fluids p r imar i ly  in the presence o f  p l ana r  
boundar ies .  The fact  tha t  a par t ic le  in a one-d imens iona l  system o f  par t ic les  
with cores  is shie lded f rom direct  ac t ion o f  the b o u n d a r y  by  in tervening 
par t ic les  has a na tu ra l  extension to two-  or  th ree -d imens iona l  fluids. I f  a t ten-  
t ion is res t r ic ted to  lower  o rde r  d i s t r ibu t ion  funct ions,  only  a few part ic les  are  
avai lable  to p rov ide  gua ran teed  shielding,  and  the a p p r o x i m a t i o n  fails as s o o n  
as these par t ic les  are too  far  away.  Thus,  a fo rmula t ion  is requi red  in which 
one never  considers  widely separa ted  part icles ,  and  this is accompl i shed  by 
the B B G K Y  hierarchy  when the in te rac t ion  is o f  shor t  range.  Us ing  only 
o n e - b o d y  shielding,  qui te  sat isfying results are  ob ta ined  in the p r o t o t y p e  case 
o f  a ha rd -co re  fluid, and  it seems no t  t oo  difficult to fur ther  improve  the 
technique by  consider ing,  impl ic i t ly  or  explicit ly,  large sets o f  shielding 
part icles .  
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